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A NUMERICAL PROCEDURE FOR CALCULATING STRESS AND DEFORMATION
NEAR A SLIT IN A THREE-DIMENSIONAL ELASTIC-PLASTIC SOLID
by David J. Ayres

Lewis Research Center _
National Aeronautics and Space Administration
' Cleveland, Ohio

ABSTRACT

A finite difference procedure for the computation of stress and deformation in a
three-dimensional elastic-plastic solid is presented. This iterative technique, based on
Newton's method for determining the roots of a system of polynomials, is applicable to
both linear and nonlinear problems. The procedure requires a minimum of computer
storage capability and moderate computer running time.

Three sample stress-concentration problems are treated. The first problem is the
analysis of a plate in plane strain with a slit at its center, the second is the analysis of a
thick plate with a rectangular slit through its thickness, and the last is the analysis of a
thick plate containing a semielliptical slit which extends only halfway through the thick-
ness. The loading condition in all sample problems is uniaxial tension normal to the
slit.
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A NUMERICAL PROCEDURE FOR CALCULATING STRESS AND DEFORMATION
NEAR A SLIT IN A THREE-DIMENSIONAL ELASTIC-PLASTIC SOLID
by David J. Ayres

Lewis Research Center

SUMMARY

A finite difference procedure for the computation of stress and deformation in a
three-dimensional elastic-plastic solid is presented. This iterative technique, based on
Newton's method for determining the roots of a system of polynomials, is applicable to
both linear and nonlinear problems. The procedure requires a minimum of computer
storage capability and moderate computer running time.

Three sample stress-concentration problems are treated. The first problem is the
analysis of a plate in plane strain with a slit at its center, the second is the analysis of a
thick plate with a rectangular slit through its thickness, and the last is the analysis of a
thick plate containing a semielliptical slit which extends only halfway through the thick-
ness. The loading condition in all sample problems is uniaxial tension normal to the
slit.

INTRODUCTION

Numerical methods which involve the solution of large systems of simultaneous
equations have long been applied to two-dimensional problems in solid mechanics. The
relaxation technique of Southwell (ref. 1), the matrix displacement methods of Clough
(ref. 2) and Argyris (ref. 3), the discrete model of Harper and Ang (ref. 4), and the
method of successive elastic solutions of Mendelson (ref. 5) are some of the procedures
that have been successfully applied to two-dimensional elastic-plastic problems.

The matrix displacement method is the only numerical procedure that has been suc-
cessfully applied to three-dimensional problems (ref. 3). The computer storage and
running time requirements, however, are great because of the large number of simul-
taneous equations to be solved. In particular, the accurate determination of the stress
near a slit in a three-dimensional elastic-plastic body requires the solution of so many



simultaneous equations that the running time on present day computers discourages the
use of this method.

In order to efficiently solve three-dimensional problems using computers that are
available today, a new procedure is required. This procedure must permit the solution
of thousands of simultaneous equations fairly rapidly. It must be sufficiently general so
that problems concerning many different types of materials can be solved, and it must be
sufficiently accurate to give a useful approximation of the stress close to a slit. This
report presents such a numerical procedure.

The procedure presented herein is an extension of the general method for computing
stress and deformation developed in reference 6 and was inspired by the iterative method
of Harper and Ang (ref. 4). For this procedure the partial differential equations of equi-
librium of the solid are written as finite difference equations in terms of the displacement
of points of the solid, These equations are solved iteratively by a relaxation technique.
This relaxation converges for linear and nonlinear equations in three dimensions if a
reasonable first approximation to the displacement of the solid is assumed. The stress
in the body is computed from the resulting displacements.

In this report, the solid is assumed to be elastic and perfectly plastic, obeying
Hookes' Law, the Mises-Hencky yield condition, and the Prandtl-Reuss flow rule. The
procedure is illustrated by three examples of a slit in an elastic-plastic plate. The first
example is a slit in plane strain, the second is a thick plate with a rectangular slit
through the thickness, and the third is a thick plate with a semielliptical slit only par-
tially through its thickness.

SYMBOLS

In this report the conventional summation notation is employed. For example,
8 = 211 g9 t a33
where the range of the index is three unless otherwise indicated. The following symbols
are used:
b width of plate
c half length of slit in the X1 direction
small increase in a displacement component
E Young's modulus

EQ equilibrium equation
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volumetric strain

shear modulus, G =

indices

E

2(1 +v)

second deviator stress invarient

bulk modulus, K =

yield condition, k2

index limits

grid point

residual (amount by which a finite difference equation is not satisfied)

relaxation factor
hydrostatic stress

stress tensor

E

3(1 - 2v)

1 2
_ay

traction boundary equation

displacement
plastic work

distance

difference between values at two sucessive load levels

Kronecker delta, Gij

strain
Poisson's ratio

uniaxial yield stress

1if i=j
=0 if i#j



BASIC EQUATIONS

Every point in a solid body must satisfy the equations of equilibrium. For a station-

ary body with no body forces acting these equations can be written in Cartesian coordi-
nates as follows:

1,2,3
1,2,3

(1)

where the Tij are the components of the stress tensor T in the body at the point with
coordinates (Xl, X9 X3).

The behavior of each material can be described by a constitutive equation. An elas-
tic, perfectly plastic material is described by the combination of Hooke's Law, the
Mises-Hencky yield condition, and the Prandtl-Reuss flow rule. In Cartesian coordi-
nates the constitutive equation derived in reference 4 can be written in incremental form
as

AW
L= Ae.. -0.. Ae - == .. = O.. 6.. A
ATu 2G €4 ij e 5 (T1;| 1]S) + 3K i e (2)
2k
where
€ B
e:..il_ S:i
3 3

. 2
(Tij - (Si].S)(Aeij - 61]' de) if Jo=k
AW =

0 if J, <K

1

The Tij are known from the previous load increment, and Ui are the components of the



displacement of the body at the point (Xl’ X2, X3). On the boundary of the body, either
traction or displacement must be assigned.

If the stress tensor T satisfies equation (1) for a particular boundary condition and
constitutive equation and the boundary condition is altered so that the stress changes by
AT, from equation (1) the ATij must satisfy the equation

-0 | (4

Substituting equations (2) and (3) into equation (4) results in a set of three simulta-
neous partial differential equations in terms of the three unknown displacement compo-
nents and the known stresses and displacements from the previous load increment.

These equations are solved by a finite difference technique. Certain points in the body
are designated as grid points, and the displacement U of the body is defined at these
points. When the finite difference approximations to the derivatives of U are substi-
tuted into equation (4), written at each grid point in the body, the system of partial dif-
ferential equations reduces to a large number of simultaneous polynomial equations which
are written symbolically as

EQip(AUl, AU,, AUg) =0 (5)

where n is the number of interior grid points.

The constitutive equation must be satisfied at every boundary grid point. When
traction is prescribed in a particular direction at a boundary point, the constitutive equa-
tion is used to determine the displacement in that direction. When the finite difference
approximations to the derivatives of U are substituted into equation (2), the traction
boundary condition is written in symbolic form as

( ) Pe b2 ()
TB, (AU,, AU,, AU,) =0 6
S p=1,. .. ,m

where m is the number of boundary points where traction is prescribed. The displace-
ment U at each grid point is determined by the simultaneous solutions of equations (5)
and (6).



NUMERICAL PROCEDURE

The numerical procedure for the solution of the finite difference equations (egs. (5)
and (6)) is briefly stated as follows: ,

(1) Designate certain points of the body as grid points. Choose a set of values for
the displacement U that approximates the effect of the applied load at all these points.

(2) Starting at a convenient point (preferably near the slit), substitute the displace-
ment components into the equilibrium equation (eq. (5)) or the boundary condition (eq. (6))
for a particular direction i. Then calculate the residual Ri, 1 the amount by which the
equation is not satisfied.

(3) Alter the displacement component in the i direction Ui by a small arbitrary
amount d. Compute the residual Ri, 9 when the altered displacement is used.

(4) Calculate a new value Ui(n ew) that causes the residual for this equation to be less
than Ri, 1 found in step 2. This value is calculated by the extrapolation illustrated in
figure 1 to be

AU Ri1 o

U~ = U. + o— = U_ -
i(new) i(guess) i(guess) -
RF (Ri 9 Ri, 1)RF

2

d

(The selection of the relaxation factor RF is discussed for each example.)

(5) Repeat this procedure (steps 2 to 4) for each direction i at each point p in the
body.

(6) Repeat the complete procedure (steps 2 to 5) until all the residuals are small.
The procedure is said to be converging when the sum of the absolute values of the resid-
uals is becoming smaller. It is assumed to have converged when this sum becomes less
than a prescribed small number.

This procedure is a form of Newton's method (ref. 7) for determining the roots of a
system of polynomials and, therefore, does not require the constitutive equations to be
linear in displacement derivatives. In this report, however, only the linear equation (2)
is used. The one requirement for the procedure is a reasonable first guess of the dis-
placement of the body due to the boundary traction. It is shown in the examples, however,
that these assumed values need not be very close to the true values.



EXAMPLES

The numerical procedure is used to obtain approximate solutions for three stress-
concentration problems. The first example illustrates the two-dimensional plane strain
analysis of a rectangular plate which contains a central slit, the second illustrates the
more practical three-dimensional analysis of a plate of finite thickness containing a rec-
tangular slit through its thickness, and the third illustrates the case of a thick plate con-
taining a semielliptical slit which extends only halfway through the thickness. The di-
mensions of these three plates are shown in figure 2. The elastic-plastic material prop-
erties for all examples are as follows:

Young's modulus, E, ksi (N/m2) . .« o oot 3x10%(2. 06x101Y)

Poisson's ratio, y . . . . . .. e e e e e e e e e e e e e e e e e e e e e 0.3

Uniaxial yield stress, o, ksi (N/m2) . . 200(1. 38x10°)
Plane Strain

The geometry of the first example is illustrated in figure 2(a). A uniform tension is
applied in the X2 direction. No deformation occurs normal to the plane of the plate.
The slit half-length ¢ equals 1/6 of the plate width b.

Figure 3 shows a composite of the three successive grid patterns used to compute
the elastic solution on one-quarter of the symmetrical plate. The method of choosing the
successive grids is briefly stated as follows:

(1) The entire quarter plate is divided into squares with side length b/18 (grid 1).
The uniform tensile load is applied to the upper boundary of the plate (boundary line 1).
In this example the displacement values for the plate without a slit are assumed for the
first trial. The elastic solution for this grid and boundary condition is determined within
a certain error by the numerical procedure.

(2) Stress values calculated on grid 1 are interpolated along boundary line 2. The
displacements on grid 1 are interpolated to give an approximation to the solution of the
elastic plate below boundary line 2 on the square grid with side length b/36 (grid 2).

The elastic solution of this separate problem with a traction boundary condition pre-
scribed at boundary line 2 is computed.

(3) Stresses calculated on grid 2 are interpolated along boundary line 3. The dis-
placements on grid 2 are interpolated to give an approximation to the solution of the elas-
tic plate below boundary line 3 on the square grid with side length b/72 (grid 3). The
solution of this final problem is considered the elastic solution for the plate in plane
strain.



The technique of placing a more refined grid over a smaller area could be continued
many times. These three grid sizes, however, establish the trend to be expected if
more refined grids are used. The technique permits the use of a fine grid where the
stress is expected to vary greatly with distance and a coarse grid wherethe stress is ex-
pected to be more nearly constant.

The stress ahead of the slit and normal to it calculated on each of the three square
grids is presented in figure 4 and table I. The solutions of the elastic plane problems
for an infinite plate with a slit b/3 in length (ref. 8), an infinite plate with a series of
colinear slits b/3 in length with centers b apart (ref. 9), and an unpublished solution
for the finite-width plate by A. Mendelson of the Lewis Research Center are shown for
comparison. The variation of the stress distribution with grid size sets an obvious trend
which appears reasonable when the analytical solutions are considered.

In order to calculate the analytical solutions, the exact location of the end of the slit
must be known. The numerical procedure requires only that the grid points on the slit
be considered traction-free boundary points and that the grid points not slit be considered
interior points. The end of the slit then lies somewhere between two grid points. The
uniform tensile load deforms the slit into a nearly elliptical shape. Extrapolation of the
displacement of the grid points on the slit provides an estimate of the location of the tip
of the slit where no displacement in the X2 direction occurs. This value is approxi-
mately one-quarter of a grid space before the first interior grid point in the line of the
slit. This more precise crack length of (11.75/12.00) (b/3) is used to calculate the ana-
lytical solutions shown in figure 4. »

The first grid point (on grid 3) yields at an applied gross tension of 0. 424 oy. The
plate above boundary line 3 is assumed to remain elastic and to remain unaffected by the
growth of the plastic zone near the tip of the slit. After initial yielding, the load on
grid 3 was increased by 3 percent of the previous load for 28 increments. In order to
obtain a fairly rapid solution, a fixed small number of iterations (30) was employed for
each increment. The growth of the plastic zone is illustrated in figure 5 for various ap-
plied tensile loads. The redistribution of stress ahead of the slit and normal to it due to
the plasticity of the material is illustrated in figure 6 for one particular load.

The convergence of the elastic solution on the three successive grids is shown in
figure 7. In this figure the mean residual (i.e., the sum of the absolute value of the re-
siduals divided by the number of grid points) is plotted against increasing number of it-
erations. For each grid the mean residual of the finite difference equations decreases
with increasing iterations. As the grid boundary comes close to the slit, the mean re-
sidual increases because a greater percentage of grid points are very near the slit.

The relaxation factor chosen for this two-dimensional problem was 1. 0 because
numbers greater than 1.0 decreased the rate of convergence and numbers less than 1.0
caused oscillation or divergence of the solution. The iteration was stopped for each grid
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when the increment AUi to every displacement component Ui satisfied the condition

U,
1, 1076 (8)

1x10%

AUi <

The second term (10'6) on the right side of expression (8) was chosen to be about the
same magnitude as the first term. This expedient is needed for those stations where the
displacement is zero.

Figure 8 illustrates the growth of the mean residual with the number of load incre-
ments. As the plastic zone size increases, the mean residual becomes large because a
fixed number of iterations are employed. The large zones illustrated in figure 5 are cal-
culated from stress values that may contain five times as much error as the elastic solu-
tion. The residuals could be reduced to any prescribed amount, however, by allowing a
greater number of iterations for each loading increment. The largest zone, at a load of
0.970 o_, reaches boundary line 3 and, therefore, violates the assumption that boundary
line 3 would remain unaffected. These large zone sizes then must be considered only as
trends.

Rectangular Slit

The geometry of the second example is illustrated in figure 2(b). The thick plate
contains a rectangular slit of length b/3 which extends entirely through its thickness.
Figure 9 shows, on one-eighth of the symmetrical plate, the three successive grids that
were employed. The technique of refining the grid near the slit is exactly as discussed
for the plane strain example. In this case the extent of each grid was determined pri-
marily by computer core storage limitations.

The elastic stress ahead of the slit and normal to it due to the uniform tensile load
in the X2 direction is shown in figure 10 for the center of the plate (X3 = 0) and for the
face (X3 = b/12) for each of the three successive grids. The stresses show the same
trends with successively smaller grid sizes as those in the plane strain example. The
variation of the stresses T11’ T22, T33 through the thickness of the plate is illustrated
in figure 11 and compared with the plane strain values calculated in the previous ex-
ample. These results demonstrate the same trends as the stresses near a hole in a
thick plate calculated by other authors (refs. 10 and 11).

The first grid point (grid 3) yields at an applied gross tension of 0.338 Gy' Since the
boundary line 3 is near the slit, it is not reasonable to assume that the material on that
line would be unaffected by the growth of the plastic zone. Therefore, it is assumed that



the plate above boundary line 2 remains elastic and unaffected by the plastic zone. For
each load increment then, the elastic-plastic solution on both grids 2 and 3 must be com-
puted. After initial yielding, the uniform tension was increased by 3 percent of the pre-
vious load for 30 increments. The growth of the plastic zone normal to the slit at the
center of the plate (X3 = () and at the face (X3 = b/12) is shown in figures 12 and 13, re-
spectively.

‘ Figure 14 shows the growth of the plastic zone ahead of the slit in the plane of the
slit. This figure shows that the plastic zone does not extend to the center of the plate
when the zone is small. At larger applied loads, the zone extends through the plate and
becomes greater at the centerline than at the faces.

The convergence of this example is similar to the convergence of the plane strain
example. Expression (8) is employed as the convergence criterion for the elastic solu-
tion. Thirty iterations are performed for each load increment; therefore, the growth of
the mean residual with increasing plastic zone size is also similar to that described in
the previous example.

A relaxation factor of 1.4 was chosen to assure convergence of the procedure. For
three-~dimensional problems the relaxation factor 1.0 causes rapid divergence. Relax-
ation factors larger than 1.4 assure convergence at a slower rate.

Semielliptical Slit

The geometry of the final example is illustrated in figure 2(c). The thick plate con-
tains a semielliptical slit with a major half axis of b/6 and a minor half axis equal to
b/12 or half the thickness of the plate. As in the other examples, three successive grids
were employed to compute the elastic stress distribution. The extent of the grids, de-
termined primarily by computer core storage limitations, is shown on one-quarter of the
symmetrical plate, in figure 15. The initial trial displacements on grid 1 are approxi-
mations to the analogous plane stress problem in each (Xl’ Xz) grid plane in the X1 and
X2 directions and zero in the X3 direction.

Contours of elastic stress in the plane of the slit and normal to it due to the uniform
tensile load in the X2 direction are drawn in figure 16. The first grid point (grid 3)
yields at an applied gross tension of 0.437 o_. As in the previous example, the part of
the plate above boundary line 2 is assumed to be unaffected by the plastic zone growth,
and the elastic-plastic solution must be computed on both grid 2 and grid 3 for each load
increment. After initial yielding, the uniform tensile load is increased by 3 percent of
the previous load for 24 increments. The plastic zone growth on the face containing the
slit is illustrated in figure 17. The zone growth through the thickness to the back face of
the plate is shown in figure 18. Notice that the zone grows from the slit tip and then
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joins with another zone initiated on the back face. The stress on the back face directly
ahead of the slit is still at a low elastic stress. A three-dimensional sketch of the plastic
zone at applied stress of 0.888 ¢ v is shown in figure 19 for one-quarter of the symmet-
rical plate.

The convergence of this example required a relaxation factor of at least 1.4, As in
the previous three-dimensional example, values less than 1.4 caused rapid divergence.
Expression (8) was employed as the convergence criterion for the elastic solution, and
30 iterations were performed for every load increment beyond the initial yield point.
The mean residual thus behaves similarly to that discussed in the plane strain example.
The mean residual growth during increasing load and plastic zone size is illustrated in
figure 20. As discussed in the section Plane Strain, a greater number of iterations for
each increment could reduce the mean residual to any desired amount.

DISCUSSION

There are several requirements that a new numerical procedure must fulfill. First,
it must produce an answer, that is, it must coﬁverge. In the three examples illustrated,
the convergence is monotonic; thus, the error is controlled by the number of iterations.
A relaxation factor, based on the number of dimensions, grid element shape, Poisson's
ratio, and perhaps other parameters, must be chosen wisely. In all cases attempted,
relaxation factors of 1.0 and 1. 4 appear satisfactory for two- and three-dimensional ex-
amples, respectively. These values were determined experimentally, however, and no
theoretical justification has been made. The requirement that a reasonable first approxi-
mation be made is apparently not harsh since the trivial value of uniform tension permits
convergence. _

Another requirement of a numerical procedure is that it produce results of useful
accuracy. The present numerical results can be compared to analytical solutions for
plane examples, and the trends in some three-dimensional problems can be compared
with other problems that have been solved. The numerical results of the plane strain
example compare favorably with the analytical solutions of similar problems. The stress
variation through the thickness of the plate with the rectangular slit illustrates the same
trends that occur in the exact solution of other related problems.

A final criterion by which to judge a numerical method is economy. Table II lists
the computer running time on the NASA Lewis IBM 7044/70941I for the three examples.
These times are much less than those required to solve problems involving fewer un-
knowns by the matrix displacement method of Argyris (ref. 3). In order to obtain better
precision, however, times much greater than those listed may be required. Since it is
less expensive to use a smaller computer, storage minimization is also an economy.
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The bniy quantities that need to be stored for each grid point at any particular load incre-
ment are six stress and three displacement components calculated for the previous in-
crement and three displacement and three flexibility coefficient components (the quanti-
ties (Ri, 1- Ri, 2) /d) for thé current increment. The most important economy is conven-
ience, however, since the method can be employed on any farily large computer with no
peripheral storage or other special equipment. Although the problems considered herein
have not included strain hardening, the method is sufficiently general to allow the use of
various material properties including arbitrary strain hardenihg.

CONCLUDING REMARKS

The iterative procedure presented herein was found to be convergent. The error in
the solution of the difference equations is known after every iteration and can be con-
trolled by the number of iterations. The procedure can be used on most large computers
presently available because a minimum of core storage and no peripheral storage is re-
quired. The running time for problems involving thousands of simultaneous equations is
moderate. The stress values calculated in the elastic plane strain analysis of a plate
containing a central slit were compared with an analytical solution of Westergaard and
are in good agreement. Although no exact comparisons are available for the three-
dimensional examples, high confidence is placed in the usefulness of the procedure be-
cause of its performance on the two-dimensional problem.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, April 23, 1968,
124-08-06-01-22.
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(a) Plane strain.

Displacement component, U,
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Figure 1. - Extrapolation for numerical procedure.

{b) Rectanguiar slit.

Figure 2. - Example geometry.

(c) Semielliptical slit.
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Figure 3. - Grid on one-quarter of plane strain example.
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Figure 4. - Ratio of elastic stress ahead of slit in direction of load to remotely applied stress for plane strain

example,
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Figure 5. - Plastic zone size for plane strain example.
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example,
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Figure 9. --Grid on one-eighth of rectangular slit example.
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Figure 10. - Ratio of elastic stress ahead of slit in direction of load to remotely applied
stress for rectanguiar slit example,
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Figure 11, - Variation of ratio of elastic stress ahead of slit
to remotely applied stress through thickness for rectangu-
lar slit example.
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Figure 12. - Plastic zone size in plane X3=10 for rectangular slit example.
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Figure 13. - Plastic zone size in plane X3 = b/12 for rectangular slit example,
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Figure 14. - Plastic zone size in plane of slit (X, = 0) for rectangular

slit example.
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Figure 15. - Grid on one-quarter of semietliptical slit example.
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Figure 16. - Elastic stress in direction of load in plane of semielliptical slit. Contours of ratio of stress
to remotely applied stress.
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Figure 17. - Plastic zone size in plane X3 =0 for semielliptical slit example.

Distance from centerline of plate

X2

bib

Distance from plane of slit

&

Zone Applied
stress

1 04370
2 520
3 .6dlo
4 180
5
6
7

>

0 b/12 bi6
Distance from front face of plate

Figure 18. - Plastic zone size in
plane Xy =0 for semielliptical
stit example,

»X3

b/2



9/4

o

-ajdwexa jis jeandijjeiwes 10}

I

0 888°( $Sa41S paijdde Joj auoz J1iseld ~ ‘6T a4nbiy

90¢¥-d




L= eovo

Accumuiated mean residual ratio

3.0

2.6

2.2

1.8

14

1.0

E 4 8 12 16 20

Load increment number

Figure 20. - Ratio of accumulated mean residual to

24

mean residual for elastic solution for grid 2 of elastic-

plastic semielliptical slit example,
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